Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.10.14.512296

ABSTRACT

SARS-CoV-2 spike protein (S) is structurally dynamic and has been observed by cryo-EM to adopt a variety of prefusion conformations that can be categorized as locked, closed and open. The locked conformations feature tightly packed trimers with structural elements incompatible with RBD in "up" position. For SARS-CoV-2 S, it has been shown that the locked conformations are transient under neutral pH. Probably due to their transience, locked conformations remain largely uncharacterized for SARS-CoV-1 S. Intriguingly, locked conformations were the only conformations captured for S proteins of bat and pangolin origin SARS-related coronaviruses. In this study, we introduced x1, x2, and x3 disulfides into SARS-CoV-1 S. Some of these disulfides have been shown to preserve rare locked conformations when introduced to SARS-CoV-2 S. Introduction of these disulfides allowed us to image a variety of locked and other rare conformations for SARS-CoV-1 S by cryo-EM. We identified bound cofactors and structural features that are associated with SARS-CoV-1 S locked conformations. We compare newly determined structures to other available spike structures of Sarbecoviruses to identify conserved features and discuss their possible functions.


Subject(s)
Severe Acute Respiratory Syndrome
2.
Research Square ; 2022.
Article in English | EuropePMC | ID: covidwho-1786477

ABSTRACT

How SARS-CoV-2 causes disturbances of the lung microenvironment and systemic immune response remains a mystery. Here, we first analyze detailedly paired single-cell transcriptome data of the lungs, blood and bone marrow of two patients who died of COVID-19. Second, our results demonstrate that SARS-CoV-2 infection significantly increases the cellular communication frequency between AT1/AT2 cells and highly inflammatory myeloid cells, and induces the pulmonary inflammation microenvironment, and drives the disorder of fibroblasts, club and ciliated cells, thereby causing the increase of pulmonary fibrosis and mucus accumulation. Third, our works reveal that the increase of the lung T cell infiltration is mainly recruited by myeloid cells through certain ligands/receptors (ANXA1/FPR1, C5AR1/RPS19 and CCL5/CCR1), rather than AT1/AT2. Fourth, we find that some ligands and receptors such as ANXA1/FPR1, CD74/COPA, CXCLs/CXCRs, ALOX5/ALOX5AP, CCL5/CCR1, are significantly activated and shared among patients’ lungs, blood and bone marrow, implying that dysregulated ligands and receptors may cause the migration, redistribution and the inflammatory storm of immune cells in different tissues. Overall, our study reveals a latent mechanism by which the disorders of ligands and receptors caused by SARS-CoV-2 infection drive cell communication alteration, the pulmonary inflammatory microenvironment and systemic immune responses across tissues in COVID-19 patients.

3.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1381122.v1

ABSTRACT

Population antibody response is believed to be important in selection of new variant viruses. We identified that SARS-CoV-2 infections elicit a population immune response mediated by a lineage of VH1-69 germline antibodies. The representative antibody R1-32 targets a novel semi-cryptic epitope defining a new class of RBD targeting antibodies. Binding to this non-ACE2 competing epitope leading to spike destruction impairing virus entry. Based on epitope location, neutralization mechanism and analysis of antibody binding to spike variants we propose that recurrent substitutions at 452 and 490 are associated with immune evasion of this population antibody response. These substitutions, including L452R found in the Delta variant, disrupt interaction mediated by the VH1-69 specific hydrophobic HCDR2 to impair antibody-antigen association allowing variants to escape. Lacking 452/490 substitutions, the Omicron variant is sensitive to this class of antibodies. Our results provide new insights into SARS-CoV-2 variant genesis and immune evasion.


Subject(s)
COVID-19
4.
Sustainability ; 13(10):5471, 2021.
Article in English | MDPI | ID: covidwho-1227064

ABSTRACT

In order to enable online learning to continue developing when the COVID-19 pandemic passes, this study aimed to identify the critical factors that affected the use of e-learning by university students during the pandemic. These critical factors will help to increase the efficiency of future development and deployment of online learning systems. Through a literature review, this study employed the technology acceptance model, social support, and task–technology fit as the theoretical basis to establish the framework of the online learning environment with regards to the technology acceptance model in the context of emergency management. A questionnaire survey was administered to students in universities that had implemented online teaching during the pandemic, and 552 valid responses were collected. The survey explored the factors affecting the willingness of higher education institution students to continue using online learning, and the following conclusions were drawn. (1) The easier an online learning platform was to navigate, the better it was perceived by the students, and thus the students were more willing to use it. (2) Ease of use and usefulness were associated with the teachers’ choice of platform and their ability to achieve a satisfactory fit between the course design and platform navigation, which thereby affected the students’ learning outcomes and attitude towards use. (3) The positive attitude of teachers towards teaching increased the students’ perceived ease of use of online learning. (4) During the pandemic, family support—a major support for teachers in online teaching—enhanced teachers’ attitudes towards, and willingness to provide, online teaching. A high level of support showed that the parents urged the students to learn and complete online learning tasks as instructed by the teachers, implying that family support could affect the students’ habits towards, adaptation to, and identification of online learning. The study results provide insights into the factors affecting the willingness of teachers and students to continue using e-learning platforms.

6.
Nat Commun ; 12(1): 1676, 2021 03 15.
Article in English | MEDLINE | ID: covidwho-1135664

ABSTRACT

The recently identified Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the cause of the COVID-19 pandemic. How this novel beta-coronavirus virus, and coronaviruses more generally, alter cellular metabolism to support massive production of ~30 kB viral genomes and subgenomic viral RNAs remains largely unknown. To gain insights, transcriptional and metabolomic analyses are performed 8 hours after SARS-CoV-2 infection, an early timepoint where the viral lifecycle is completed but prior to overt effects on host cell growth or survival. Here, we show that SARS-CoV-2 remodels host folate and one-carbon metabolism at the post-transcriptional level to support de novo purine synthesis, bypassing viral shutoff of host translation. Intracellular glucose and folate are depleted in SARS-CoV-2-infected cells, and viral replication is exquisitely sensitive to inhibitors of folate and one-carbon metabolism, notably methotrexate. Host metabolism targeted therapy could add to the armamentarium against future coronavirus outbreaks.


Subject(s)
COVID-19/metabolism , Carbon/metabolism , Folic Acid/metabolism , SARS-CoV-2/physiology , Virus Replication , A549 Cells , Animals , COVID-19/virology , Chlorocebus aethiops , Cytopathogenic Effect, Viral , Folic Acid Antagonists/pharmacology , Glucose/metabolism , Humans , Methotrexate/pharmacology , RNA, Viral/biosynthesis , SARS-CoV-2/drug effects , Serine/metabolism , Transcription, Genetic , Vero Cells , Viral Proteins/genetics , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL